HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation

نویسندگان

  • Jack H. Crawford
  • T. Scott Isbell
  • Zhi Huang
  • Sruti Shiva
  • Balu K. Chacko
  • Alan N. Schechter
  • Victor M. Darley-Usmar
  • Jeffrey D. Kerby
  • John D. Lang
  • David Kraus
  • Chien Ho
  • Mark T. Gladwin
  • Rakesh P. Patel
چکیده

Local vasodilation in response to hypoxia is a fundamental physiologic response ensuring oxygen delivery to tissues under metabolic stress. Recent studies identify a role for the red blood cell (RBC), with hemoglobin the hypoxic sensor. Herein, we investigate the mechanisms regulating this process and explore the relative roles of adenosine triphosphate, S-nitrosohemoglobin, and nitrite as effectors. We provide evidence that hypoxic RBCs mediate vasodilation by reducing nitrite to nitric oxide (NO) and ATP release. NO dependence for nitrite-mediated vasodilation was evidenced by NO gas formation, stimulation of cGMP production, and inhibition of mitochondrial respiration in a process sensitive to the NO scavenger C-PTIO. The nitrite reductase activity of hemoglobin is modulated by heme deoxygenation and heme redox potential, with maximal activity observed at 50% hemoglobin oxygenation (P50). Concomitantly, vasodilation is initiated at the P50, suggesting that oxygen sensing by hemoglobin is mechanistically linked to nitrite reduction and stimulation of vasodilation. Mutation of the conserved 93cys residue decreases the heme redox potential (ie, decreases E1/2), an effect that increases nitrite reductase activity and vasodilation at any given hemoglobin saturation. These data support a function for RBC hemoglobin as an allosterically and redox-regulated nitrite reductase whose “enzyme activity” couples hypoxia to increased NO-dependent blood flow. (Blood. 2006;107:566-574)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics.

The ability of oxyhemoglobin to inhibit nitric oxide (NO)-dependent activation of soluble guanylate cyclase and vasodilation provided some of the earliest experimental evidence that NO was the endothelium-derived relaxing factor (EDRF). The chemical behavior of this dioxygenation reaction, producing nearly diffusion limited and irreversible NO scavenging, presents a major paradox in vascular bi...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Hemin induces neuroglobin expression in neural cells

Neuroglobin is a newly identified vertebrate globin that binds O2 and is expressed in cerebral neurons. We found recently that neuronal expression of neuroglobin is stimulated by hypoxia and ischemia and protects neurons from hypoxic injury. Here we report that, like hemoglobin and myoglobin, neuroglobin expression can also be induced by hemin. Induction was concentration dependent and time dep...

متن کامل

NO generation from nitrite and its role in vascular control.

NO generated from L-arginine by NO synthases (NOSs) in the endothelium and in other cells plays a central role in several aspects of vascular biology. The biological activity of NO is acutely terminated by oxidation to nitrite and nitrate, and these compounds have long been considered only as inert end-products of NO. However, this dogma is now being challenged because recent research convincin...

متن کامل

Vascular hypoxic preconditioning relies on TRPV4-dependent calcium influx and proper intercellular gap junctions communication.

OBJECTIVE We investigated the impact of hypoxia-reoxygenation on endothelial relaxation and aimed to clarify the role of transient receptor potential cation channels V4 (TRPV4) and gap junctions in the protective effect associated with hypoxic preconditioning on the vascular function. METHODS AND RESULTS By mimicking ischemia-reperfusion in C57BL/6 male mice in vivo, we documented a reduced N...

متن کامل

Vascular responses to hypoxia and ischemia.

Blood vessels function as conduits for the delivery of O(2) and nutrients. Hypoxia-inducible factor 1 (HIF-1) mediates adaptive transcriptional responses to hypoxia/ischemia that include expression of angiogenic cytokines/growth factors by hypoxic cells and expression of cognate receptors for these ligands by vascular cells and their progenitors. Impairment of HIF-1-dependent responses to hypox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005